Jak wygląda pobór prądu z akumulatora i jego ładowanie podczas pracy silnika? Czy jak włączymy kilka odbiorników prądu to powstanie deficyt energii? To oczywiście zależy od konkretnego samochodu, ale użyte autko testowe powinno dosyć dobrze reprezentować gro samochodów.
Czy akumulator podczas jazdy jest rozładowywany, czy może cały czas ładowany?(Oczywiście zakładam sprawność instalacji elektrycznej w samochodzie.)
W testowym samochodzie jest zainstalowany rozrusznik o mocy 0,9 kW lub 1 kW - niestety nie wiem dokładnie. Alternator ma wydajność 100 A.
***
Do pierwszego testu użyłem sondy cęgowej AC/DC z zakresami 40 i 400 A - co przekłada się odpowiednio na 10 mV na 1 A, oraz 1 mV na 1 A mierzonego natężenia.
Przed nakręceniem tego filmu celowo rozładowywałem akumulator przez około 30 minut. Zostawiłem włączone światła mijania, radio i CB.
1) Pobór prądu z akumulatora i jego ładowanie podczas postoju i pracy silnika:
Przykładowe przeliczenie zmierzonego napięcia na ampery:
110 mV / 10 mV = 11
Pobór prądu wynosi 11 A.
***
Akumulator na filmie podłączony jest w sposób opisany poniżej:
Do drugiego filmu akumulatora nie rozładowywałem. Poprzedniego dnia jeździłem nim kilka godzin w trasie, więc akumulator był naładowany (mam ciągłą kontrolę napięci w samochodzie, więc wiem, że ładowanie było).
Drugi film ma potwierdzić poprawność przeprowadzenia pierwszego testu (i uzyskanych wyników). Zawsze warto sprawdzać i nawet krzyżowo potwierdzać uzyskane wyniki.
Do tego pomiaru wykorzystałem bocznik, co daje możliwość najpewniejszego pomiaru przepływu prądu i jego natężenia. Wiązało to się z kilkoma problemami. Po pierwsze nie chciałem stracić ustawień adaptacyjnych komputera sterującego silnikiem, wiec zależało mi, by nie rozłączyć zasilania samochodu. Na szczęście mam zainstalowany kondensator o pojemności około 0,5 F co ułatwiło zadanie. Po drugie należało wykonać pewne połączenia bocznika z instalacją samochodową, a potrzebne przekroje przewodów, a nawet klemy, mam na działce. Znalazłem w szpargałach kabel wytrzymujący ciągłe natężenie do 60 A, a klemę zastąpiłem opaską zaciskową. Do tego solidne lutowanie i nie bałem się obciążyć tą instalację prądem rozrusznika.
Do pomiaru użyłem rezystor pomiarowy z multimetru:
Rezystancja tego bocznika wynosi 0,01 Ω. Na powyższym filmie 10 mV oznacza 1 A.
Pomiar z użyciem oscyloskopu. Niebieski przebieg odwzorowuje napiecie na zaciskach akumulatora, a czerwony przebieg odwzorowuje przepływ prądu przez rezystor pomiarowy.
2) Pobór prądu z akumulatora i jego ładowanie podczas postoju i pracy silnika:
(Autko nie umyte po zimie - rzadko go używam)
Pomiar z użyciem funkcji rekordera skopometru, wiec odwzorowuję tylko natężenie prądu.
Na tym filmie sprawdziłem też pobór prądu przez:
- Światła mijania.
- Wentylator nawiewu na wszystkich "bigach".
- Pobór prądu przez samochód po przekręceniu kluczyka z wyłączona pompą paliwa.
- Pompę paliwa.
- Radio samochodowe.
- CB radio Pretendent Jackson.
- Światła stop'u.
- Ogrzewanie tylnej szyby.
3) Pobór prądu z akumulatora i jego ładowanie podczas postoju i pracy silnika:
Dwa powyższe filmy wyszły nieostre. Niestety piękna pogoda, a co za tym idzie oślepiające słońce utrudniło obserwowanie wyświetlacza aparatu. Ilość miejsca w autku również nie ułatwiała sprawy. Wartości i przebiegi jednak są widoczne, dlatego postanowiłem wykorzystać te materiały.
Wyniki testów zaskoczyły mnie. Oczekiwałem większego poboru prądu z akumulatora, a na pewno częstszego. Wygląda na to, że akumulator w samochodzie pracuje jak akumulator buforowy.
Na YouTube są filmy, w których widać zmiany rezystancji ścieżek miedzianych na PCB (printed circuit board) gdy są pocynowane, lub też nie są. Na końcu tego wpisu umieściłem najważniejsze filmy pokazujące jak zmienia się opór elektryczny ścieżki miedzianej przy przepływie prądu stałego (DC, direct current).
Rozwinąłem testy rezystancji o pomiar prądów przemiennych (AC, alternating current). We wszystkich moich filmach użyłem technicznej metody pomiaru rezystancji:
Oczywiście wszędzie, gdzie piszę o cynowaniu i cynie mam na myśli stop cyny z ołowiem używany do lutowania. W moich filmach użyłem "cyny lutowniczej" Sn60Pb40 (LC60).
Przeprowadziłem kilka testów przy użyciu sygnałów o różnym kształcie i o różnych częstotliwościach. Do testów wybrałem trzy rodzaje przebiegów: sinusoidalny, prostokątny i szum różowy.
Sygnał sinusoidalnyjest najbardziej pierwotnym przebiegiem i najbardziej powtarzalnym dla różnych częstotliwości. Ułatwia wnioskowanie z uzyskanych wyników.
W opozycji do sinusoidy jest przebieg o kształcie prostokątnym. Tu zaczynają się problemy z czasem narastania sygnału, a przez to występują problemy z interpretacją wyników w zależności od częstotliwości i możliwości generatora.
Szum różowy zastosowałem na potrzeby testu audio. Pozwala odejść od szczegółowego badania sygnałów o różnych częstotliwościach (aż do częstotliwości ponadakustycznych, co pozwala wnioskować np. o wzmacniaczu). Wg. mnie jest to metoda lepsza z jeszcze jednego powodu. Dane pomiarowe są uśredniane (co wynika z metody pomiarowej i możliwości urządzeń pomiarowych) i przez to bardziej oddane są rzeczywiste warunki pracy urządzeń audio.
Tak więc użyty sygnał sinusoidalny pozwala łatwiej porównywać wyniki, a analiza sygnału prostokątnego ma znaczenie dla np. przetwornic.
I tu dochodzimy do użytych częstotliwości.
Pierwszym ograniczeniem jest baza urządzeń pomiarowych. Potrzebne były mierniki zdolne do pomiarów małych napięć w szerokim zakresie. Drugim wymogiem był cel badania. Nie chciałem wchodzić w np. zakres KF (i wyższe). Interesowały mnie częstotliwości:
Z zakresu audio.
Przetwornic pracujących w okolicach częstotliwości 30 kHz - 100 kHz. W tym zastosowaniu jest to zakres częstotliwości najczęściej spotykany.
Przetwornic działających w okolicach 150 kHz, często znacznych mocy, pracujące np. z własnym rezonansem.
Przetwornice o wyższych częstotliwościach, często ponad 1 MHz.
Celowo używałem do testów krótkich odcinków ścieżek. Po pierwsze testy mają służyć też nauce i zabawie - więc dlaczego mam sobie ułatwiać zadanie stosując długie odcinki? Gdy jest łatwo to raczej niczego się nie nauczymy. Przypomnę, że długi odcinek ścieżki ma większą rezystancję, przez co następuje większy spadek napięcia na tej rezystancji, a to z kolei znacząco ułatwia pomiar.
Przy długich odcinkach odchodzimy jednak od rzeczywistych przypadków użycia. Co prawda, przy użytych częstotliwościach, nadal nawet nie zbliżamy się do wymiarów linii długiej, ale pozbawiamy się konkretnych informacji o rezystancji krótkich odcinków ścieżek (stosowanych w praktyce).
Czemu mają służyć te testy?
Najlepiej od razu zaprojektować na PCB ścieżki miedziane o odpowiedniej grubości i szerokości. Zdarzają się jednak sytuacje gdy:
- Naprawiamy źle zaprojektowany sprzęt. Próbujemy więc poprawić już istniejące obwody.
- Odtwarzamy uszkodzone ścieżki.
- Nie mamy możliwości przeprowadzenia odpowiednio szerokiej ścieżki, lub użyty laminat pokryty jest zbyt cienką warstwą miedzi.
- Chcemy (potrzebnie lub nie) poprawić parametry w jakimś urządzeniu, np. wzmacniaczu audio.
Chciałem uzyskać odpowiedź, w jakim zakresie częstotliwości cynowanie jest właściwe, pomocne, a może szkodliwe i nie należy tej metody stosować.
W internecie panuje wiele mitów, mających rangę prawdy objawionej, a żyjących tylko dzięki ciągłemu powtarzaniu przez wiele osób. Dlatego warto osobiście zmierzyć się z niektórymi problemami, szczególnie, ze mają bardzo praktyczne zastosowania.
Dlaczego badałem rezystancję przy różnych częstotliwościach?
Związane jest to z występowaniem efektu naskórkowości (ang. skin effect). Powoduje on, że wraz ze wzrostem częstotliwości prąd nie płynie całym przekrojem ścieżki (lub drutu), ale tylko w warstwie zewnętrznej, powierzchniowej. Grubość tej warstwy, w której płynie prąd, zmniejsza się wraz ze wzrostem częstotliwości.
Efekt naskórkowości zwiększa rezystancję przewodnika i powoduje wzrost jego temperatury. Związane jest to ze zwiększeniem gęstości prądu płynącego tylko przy powierzchni.
***
Ze względu na opór właściwy materiały można podzielić na trzy następujące grupy:
Drut o przekroju 2,5 mm2 i długości 1 m ma rezystancję (DC): - srebro 0.00636 Ω - miedź 0.00672 Ω - złoto 0.00976 Ω - aluminium 0.01128 Ω - żelazo 0.04 Ω - cyna 0.0436 Ω - ołów 0.088 Ω
Przyjmuje się, że stop lutowniczy ma od siedmiu dziesięciu razy gorszą przewodność od miedzi.
***
Tam, gdzie jest taka możliwość, a występuje efekt naskórkowości, aby ograniczyć straty mocy w przewodniku, tworzy się np. wiązkę z drutów emaliowanych (odizolowanych od siebie). Średnica pojedynczego drutu w wiązce zależy od głębokości wnikania prądu w przewodnik - średnica drutu powinna być mniejsza od głębokości wnikania. Głębokość ta, w pojedynczym drucie, zależy od częstotliwości zmiany prądu, przenikalności oraz konduktywności przewodnika. Przewód miedziany o średnicy 1 mm przy częstotliwości 100 MHz ma około 40-krotnie większą rezystancję, niż przy prądzie stałym.
W układach, gdzie występują prądy o wysokiej częstotliwości opór pochodzi od cienkiej warstwy powierzchniowej przewodnika. Niestety, również utlenianie przewodnika następuje na jego powierzchni. Ma to podwójne znaczenie: tlenki mogą mieć większą rezystancję, niż sam przewodnik i mogą prostować sygnał przemienny. Dlatego srebrzenie (nie cynowanie!) ma znaczenie ochronne, a nie ma służyć polepszeniu przewodności, ponieważ jak widać w powyższym zestawieniu, przewodność srebra przewyższa jedynie symbolicznie przewodność miedzi (rzędu 3%).
Przy wyższych częstotliwościach, gdy nie uwzględnimy prądu przesunięcia, to moc bierna w przewodzie (ścieżce) związana jest z energią pola magnetycznego - dlatego impedancja przewodu ma charakter indukcyjny (jej część urojona jest > 0). Dla bardzo wysokich częstotliwości prąd przesunięcia nie jest już do pominięcia. Impedancja przewodu określana jest wtedy przez emisję fali elektromagnetycznej, a przewód zachowuje się jak antena.
Nie będę jednak drążyć tych rozważań. Wstęp teoretyczny jest potrzebny, ale głównym celem moich testów jest przeprowadzenie praktycznego sprawdzianu w jak najbardziej przystępny sposób. Nie chcę podawać samego wyniku w postaci syntetycznej - liczę na odbiorców myślących, ciekawych i zaangażowanych.
Tak więc praktyczne testy mają zweryfikować, czy nieduże przecież zwiększenie powierzchni przewodnika, do tego materiałem o większej rezystancji niż miedź, ma praktyczne znaczenie.
***
Cynowanie ścieżek na PCB - częstotliwość 10 kHz (audio)
Do pierwszego testu częstotliwość wybrałem jako kompromisową dla zakresu audio. Może nie środkową, ale słyszalną przez "wszystkich" i znacząco odbiegającą od prądu stałego. Co prawda efekt naskórkowości prądu występuje nawet przy 50 Hz (proszę zwrócić uwagę na konstrukcję kabli energetyki zawodowej, czy okablowanie niektórych silników), ale nie chciałem teraz wnikać dokładnie w testy okablowania na potrzeby systemów audio.
Na początku porównuję rezystancje sygnału sinusoidalnego o częstotliwościach 1 kHz i 10 kHz. Następnie to samo dla sygnału prostokątnego. Od razu widać, dlaczego użyłem sygnałów o różnym kształcie.
Ten test pokazuje również, jak łatwo o pomyłkę, gdy przyjmie się złe założenia. Wystarczyło by przyjąć do testów tylko prąd sinusoidalny i interpretacja wyniku zmieniła by się o 100%.
W tym filmie ważne są trzy porównania rezystancji:
- Pomiędzy sinus 1 kHz i 10 kHz.
- Pomiędzy sinus 1 kHz i prostokątnym 1 kHz.
- Pomiędzy prostokątnym 10 kHz przed i po cynowaniu.
***
Rozważałem, czy przedstawić gotowe wnioski. I tak nie uczynię. Będę wskazywać tylko ciekawe kierunki, w których wnioskowanie z testów może podążać.
Dlatego tak zrobię, czyli nie podam na tacy gotowych wniosków? Ponieważ moje pomiary nie zamykają różnych wariantów występujących w rzeczywistych układach. Dlatego najlepiej samemu obejrzeć filmy i wyciągnąć wnioski z moich pomiarów, oraz błędów. Liczę zresztą, na osoby mądre, ciekawe świata, a nie roszczeniowo oczekujące darmowych materiałów.
***
Cynowanie ścieżek na PCB - częstotliwość 75 kHz (przetwornice)
Ponownie częstotliwość kompromisowa, tym razem dla przetwornic. Wybrałem jednak górny zakres częstotliwości występujący w pewnych typach przetwornic. To dlatego, że oczekujemy wystąpienia silniejszego efektu naskórkowości prądu przy wyższej częstotliwości. Jednocześnie nie chciałem wybierać częstotliwości 100 kHz, ponieważ za bardzo oddala się od przetwornic pracujących w okolicach 40 kHz.
Tym razem głównym badanym sygnałem jest prostokąt o wypełnieniu 10% - czyli taki przykładowy sygnał PWM nieobciążonej przetwornicy.
Na końcu filmu sprawdziłem rezystancję pocynowanej ścieżki przy użyciu napięcia stałego, co pozwala porównać różnice w oporności pomiędzy AC i DC.
Jak widać tor generatora i wzmacniacza jest kiepski. Sam generator dla tej częstotliwości daje prawidłowy kształt sygnału, ale o zbyt małej amplitudzie. Dlatego musiałem użyć wzmacniacza, który zmniejszył stromość sygnału prostokątnego. Dopiero po tych testach kupiłem specjalistyczny generator fali prostokątnej i wyczekany generator uniwersalny .
***
Cynowanie ścieżek na PCB - częstotliwość 75 kHz - multimetry analogowe GI83 i V640
Chcąc uzyskać bardziej stromy sygnał prostokątny, niż w poprzednim teście, wyeliminowałem więc wzmacniacz. Bezpośrednio do generatora DDS podłączyłem rezystory obciążenia o wartości 50 Ω. Użyty generator posiada jednak małą moc i uzyskałem bardzo mały spadek napięcia na badanej ścieżce.
Ten film jest właśnie o problemach wynikłych przy pomiarach tak małych napięć. Mało wnosi do głównego tematu tego wpisu, ale pokazuje użycie różnych przyrządów, ich wady, działanie na skrajach zakresów pomiarowych, oraz poza zakresami pomiarowymi. Nie mogłem się powstrzymać od przetestowania multimetrów V640 i GI83. Tak więc to jest nie tyle test rezystancji ścieżki, co ciekawostka pomiarowa.
To co jest ciekawe w tym filmie, to zmiana rezystancji ścieżki pobielonej cyną, gdy nałożymy na nią grubszą warstwę cyny. Trzeba oglądać na pełnym ekranie i najlepiej zaznaczyć sobie (palcem?) wskazania przed i po.
Do dalszych testów zwykłe multimetry nie wystarczą. Dlatego przeprowadziłem krótką prezentację i nanowoltomierza selektywnego i woltomierza fazoczułego.
Dodatkowo do korelacji wyników użyłem nieprodukowanego już polskiego multimetru stacjonarnego Meratronik V545.
***
Test pomiaru miliwoltów: Meratronik V545, Metrahit 29S, Philips 2534
Film pokazujący rzeczywisty (a nie deklarowany w instrukcjach) pomiar małych napięć kilkoma przyrządami, których możliwości wykraczają poza standard popularnych przyrządów.
Na filmie omówiłem również ogólnie stanowisko pomiarowe. Dokładnie widać, jakie problemy sprawiają napięcia poniżej kilku mV. Do tak małych napięć przemiennych należało by użyć bardziej specjalistycznych, dokładniejszych przyrządów.
Bardzo precyzyjnie wykonany test, przy użyciu specjalistycznych mierników. Przypomnę tylko, że miernik RMS dla przebiegu prostokątnego o wypełnieniu 50% zawyży wskazanie o około 10% - ale nadal można posługiwać się zmianą procentową wskazania.
Ponownie polecam oglądać na pełnym ekranie, oraz zaznaczyć położenie wskazówek (palcami?) przed rozpoczęciem cynowania.
***
Cynowanie ścieżek na PCB - szum różowy (audio, pink noise)
Ten film uważam za najciekawszy.
Co prawda na poprzednich filmach uzyskałem zaskakująco dobre i zachęcające wyniki cynowania ścieżek, ale ten test ma największe zastosowanie praktyczne. Wiele osób zajmuje się budową i naprawami wzmacniaczy - jest to bardzo popularny sprzęt.
Użyty rodzaj sygnału pozwala, bez wykonywania dziesiątek testów przy użyciu różnych częstotliwości i kształtów sygnału uzyskać uśrednione wyniki.
Użyta została wbudowana karta dźwiękowa 24 bity, 192 kHz, oraz wzmacniacz tranzystorowy pracujący w klasie A.
***
Cynowanie ścieżek na PCB - 150 kHz
Ponieważ możliwości pomiarowe poprzednio użytych przyrządów przy tej częstotliwości skończyły się, w roli miernika wykorzystam oscyloskop. Zwykły oscyloskop w tym pomiarze raczej się nie sprawdzi, dlatego zastosowałem oscyloskop z dobrym torem pomiarowym, rozdzielczością 12 bitów i wejściem różnicowym.
Niestety powoduje to problem z bezpośrednim odczytaniem różnicy przed i po cynowaniu. Niestety nie wpadłem na pomysł pomiaru wartości TRMS przed i po cynowaniu. Zachęcony wynikami poprzednich testów, uważałem, że różnica będzie od razu widoczna.
Podsumuję wszystkie trzy filmy, na których użyłem oscyloskop na samym końcu.
***
Cynowanie ścieżek na PCB - miedziana plecionka, 150 kHz
Tym razem zmierzyłem wartość (T)RMS. Jednak to był ostatni film, który na potrzeby tego wpisu wykonałem, dlatego na filmie "1 MHZ" również nie ma zmierzonej wartości TRMS.
***
Cynowanie ścieżek na PCB - 1 MHz
Zastanawiam się nad przeprowadzeniem testów dla częstotliwości 1 MHz i wyższych powtórnie. Teraz mam np.: specjalizowany generator przebiegu prostokątnego. Nie uczynię tego jednak w najbliższym czasie, ponieważ nie widzę takiej palącej potrzeby.
Cynowanie na trzech ostatnich filmach nie poprawiło w widoczny sposób sytuacji, ale i jej nie pogorszyło. Można więc, w newralgicznych miejscach, użyć tej metody by poprawić bilans cieplny ścieżki, lub zabezpieczyć ja przed przepaleniem w sytuacji awaryjnej (nim zadziałają odpowiednie zabezpieczenia).
***
Wspomniane na początku filmy z testami przy użyciu prądu stałego:
EEVblog #317 - PCB Tinning Myth Busting
Does putting solder on high current PCB tracks help?
Przy tworzeniu obrazu przebiegu przez oscyloskop cyfrowy, lub oscyloskop próbkujący, obrazowane są dane pobrane z pewną częstotliwością. Może to przyczynić się do odwzorowania na ekranie przebiegu o błędnym kształcie. Taki błąd, powstanie obrazy fałszywego, nazywamy przeinaczeniem (aliasing). Możemy wyróżnić dwie przyczyny powstawia aliasingu:
Pierwsza przyczyna:
Błąd może powstać na skutek błędu percepcji (przeinaczenie percepcyjne) i jest to iluzja optyczna. Proszę przyjrzeć się poniższym zdjęciom:
Przebieg właściwy:
Oscylogramy przekłamane:
Oko ludzkie łączy najbliższe punkty otrzymując nieprawidłowy obraz. Łatwo temu zapobiec ustawiając w oscyloskopie łączenia liniami sąsiednich punktów. Proszę zobaczyć poniższy film, jakie to może mieć implikacje, gdyż zazwyczaj mamy dwie możliwości łączenia punktów przez oscyloskop, co da odmienny oscylogram.
Druga przyczyna:
Drugą przyczyną powstania aliasingu może być niespełnienie warunku Nyquista twierdzenia Kotielnikowa-Shannona. Gdy liczba próbek jest mniejsza, niż dwie na okres, mamy do czynienia wtedy z przeinaczeniem właściwym.
Łatwo o taki błąd, gdy wykonamy pomiar oscyloskopem ze zbyt małą częstotliwością próbkowania i zapamiętamy przebieg, a następnie będziemy go powiększać (rozciągać) w poziomie:
Oscyloskopy próbkujące pozwalają na pomiary sygnałów szybkozmiennych w abstrakcyjnie szerokim paśmie częstotliwości. Okupione jest to jednak możliwością obserwacji jedynie przebiegów sygnałów powtarzalnych. Przyrządy te pobierają próbki napięcia sygnału wejściowego i zapamiętują je. Przy każdym następnym sygnale na bardzo krótki czas otwierana jest bramka wejściowa - odbywa się to z przesunięciem w czasie. Złożenie wszystkich pobranych próbek pozwala na odtworzenie sygnału wejściowego, czy to bezpośrednio za pomocą lampy oscyloskopowej, czy poprzez układy cyfrowe.
***
Oscyloskopy pracujące w czasie rzeczywistym generalnie osiągają pasmo do 20 GHz, przy próbkowaniu 100 GS/s. Dostępne są też modele o paśmie 100 GHz i próbkowani 240 GS/s - czyli mają parametry oscyloskopu próbkującego. Dlaczego więc oscyloskopy próbkujące są produkowane? Oczywiście chodzi o pieniądze. Oscyloskop próbkujący może być nawet dziesięć razy rańszy od oscyloskopu pracującego w czasie rzeczywistym. Skąd taka różnica w cenie? Porównajmy parametry: Oscyloskop czasu rzeczywistego: 20 -100 GHz, 240 GS/s, 8 bit Oscyloskop próbkujący I: 20 GHz - 100 GHz, 10 MS/s, rozdzielczość 14 bit Oscyloskop próbkujący II: 80 GHz, 300 kS/s, rozdzielczość 16 bit Oscyloskop próbkujący musi zebrać i przetworzyć znacząco mniej danych. Ponieważ ma na to mniej czasu jego przetworniki mogą mieć wyższe rozdzielczości.
***
Generalnie oscyloskop próbkujący jest wyposażony w przetworniki o maksymalnej częstotliwości próbkowania mniejszej niż pasmo przyrządu. Choć wydaje sie to złamaniem warunku Nyquista twierdzenia Kotielnikowa-Shannona to dzięki badaniu sygnałów powtarzalnych możemy wykonać próbkowanie w czasie ekwiwalentnym. Przetworniki (przetwornik) oscyloskopu pobierze w pierwszym przebiegu sygnału tyle próbek ile umożliwiają jego podzespoły, a kolejne próbki będzie gromadzić przy kolejnych badanych przebiegach. Oscylogram, który zobaczymy na ekranie będzie złożeniem wielu przebiegów zarejestrowanych przy wielu wyzwoleniach.
Przykłądowo PicoScope 9211A 12GHz 16bit oscyloskop próbkujący za 45000 zł pobiera próbki częstotliwością do 200 kHz, ponieważ w oscyloskopie próbkującym (samplingowym) najważniejsza nie jest jak dużo próbek na sekundę pobiera, tylko na jak krótki okres czasu potrafi otworzyć bramkę pobierającą próbkę. Oscyloskopy pracujące w trybie czasu ekwiwalentnego zazwyczaj mają rozdzielczość 12-14 bitów.
Próbki można pobierać na trzy sposoby:
Próbkowanie sekwencyjne
Wyzwalanie następuje w tym samym miejscu doprowadzonego sygnału, ale otwarcie bramki odbywa się z przesunięciem w stosunku do wyzwolenia. Za każdym razem czas przesunięcia wzrasta o stałą wartość.
Czasami oscyloskop pobiera próbki co kilka okresów, w zależności od parametrów przyrządu. Po prostu tańsze urządzenie nie są w stanie pobierać próbek z dużą częstotliwością. Tak często pracują rejestratory (przystawki) podłączane do komputera.
By zobrazować cały przebieg impulsu, włącznie z kompletnym zboczem wyzwalającym, należy manipulować czasem przesunięcia, odpowiednio go wydłużając. Można oczywiście skorzystać z wyzwalania zewnętrznego, jeżeli mamy dostęp do odpowiedniego sygnału wyprzedzającego.
Próbkowanie przypadkowe
Jak nazwa wskazuje próbki pobierane są losowo. Powoduje to że:
- Możemy obserwować kompletny impuls.
- Pobrane próbki mają różną gęstość.
Pobieraniu każdej próbki musi towarzyszyć zapamiętanie informacji o czasie jej pobrania, a konkretnie o odstępie czasu pomiędzy wyzwoleniem akwizycji, a pobraniem próbki.
Próbkowanie w czasie rzeczywistym
W czasie jednego przebiegu pobieranych jest wiele próbek, a każda z nich jest obrazowana na ekranie. Ten sposób akwizycji wymaga najlepszych parametrów urządzenia, ponieważ szybkość pobierania próbek musi być co najmniej dwukrotnie większa od największej częstotliwości występującej w sygnale. Dla sygnałów niepowtarzalnych ten współczynnik przyjmuje się uznaniowo od 5 do 20. Jedną z reguł dobierania oscyloskopu do potrzeb jest zasada piątej harmonicznej, lub w wariancie bardziej ekonomiczniej trzeciej harmonicznej: widoczność piątej (trzeciej) harmonicznej badanego sygnału wyznacza potrzebne pasmo przenoszenia oscyloskopu. Ilość harmonicznych, które przyrząd może zarejestrować wpływa bezpośrednio na jakość zobrazowania (i odwzorowania) sygnału badanego.
Należy pamiętać, że podstawa czasu musi odpowiadać badanemu sygnałowi. Jeżeli przyrząd nie będzie posiadać odpowiednich parametrów, to np. w oscyloskopie cyfrowym zawężone pasmo skutkuje aliasingiem.
W praktyce ten tryb nie jest często używany, głównie z powodu ograniczonej dynamiki. Praca oscyloskopu w trybie real time zazwyczaj pozwala maksymalnie zobaczyć trzecia harmoniczną - oczywiście zależnie od pasma oscyloskopu i częstotliwości badanego sygnału.
***
Oscyloskopy próbkujące, ze względu na duże pasmo, posiadają wejścia niskoomowe, najczęściej 50 Ω. Oznacza to, że najczęściej akceptowany sygnał doprowadzony do wejścia oscyloskopu zawiera sie w granicach od 1 V do 5 V.
Oscyloskopu próbkujące stosuje się w telekomunikacji, technice mikrofalowej i refraktometrii obiciowej:
- Torów przewodów metalowych (TDR, skrót od ang.: Time-Domain Reflectometer)
- Torów światłowodowych (OTDR, skrót od ang.: Optical Time-Domain Reflectometer)
Czyli wszędzie tam, gdzie bada się powtarzalne i stabilne sygnały.
Demosceny oscyloskopowe są popularne od lat. Może popularne to za duże słowo, ale zapewne każdy elektronik zetkną sie z tym zagadnieniem.
Można też te dema wykorzystać do porównania oscyloskopów analogowy z cyfrowymi, w szczególności trybu pracy XY, po prezentują poniższe filmy.
Nie mam obecnie dostępu do profesjonalnych oscyloskopów, ale jak tylko nadarzy się okazja to z ciekawością sprawdzę, jak wygląda demo Youscope na sprzęcie, gdzie jedna sonda różnicowa kosztuje tyle co samochód z segmentu C.
Pierwsze demo.
Schlumberger (Sefram) 2558.
Schlumberger (Sefram) 2558 vs Siglent SHS806.
Warto zwrócić uwagę jak szybkość pobierania próbek wpływa na wyświetlany obraz przez oscyloskop cyfrowy bez emulacji luminoforu. Oscyloskopy z taką emulacja potrafią
wyświetlania przebiegi z modulacją jasności, a więc w sposób zbliżony
do lampy oscyloskopowej. Najczęściej zetkniemy się z akronimem DPO (Digital Phosphor Oscilloscope) używanym przez Textronika
Poniżej jest schemat układu sterującego mocą świateł za pomocą PWM. Można go zastosować do ścieniania świateł np. w samochodzie lub rowerze. Można też tak sterowań niektórymi silnikami.
Tego typu gotowe moduły sprzedawane są na Allegro np. pod nazwami: "Moduł świateł długich do jazdy dziennej", czy "Moduł Świateł Długich Drogowych Dzienne". Takie rozwiązanie umożliwia obniżenie mocy świateł mijani, lub drogowych, używanych do jazdy dziennej. Dzięki temu nie trzeba oświetlać drogi w dzień drogi... z pełną mocą... i można obniżyć spalanie (działanie proekologiczne).
Trzeba jednak jasno powiedzieć, że takie rozwiązanie jest nielegalne na drogach publicznych. Można je stosować w innych sytuacjach: na drogach prywatnych, czy safari.
Nie wypowiem się czy obniżenie mocy i zasilanie impulsowe żarówki wpływa na przedłużenie, czy tez skrócenie czasu jej działania. Nie mam zamontowanego tego układu w samochodzie, więc nie testowałem do w realnych warunkach. Jednak podobne rozwiązania stosują producenci samochodów (tylko maja na to atest), więc nie może być bardzo źle z trwałością. Podobnie zasilane są żarówki w domu (230 V), czy żarówki halogenowe z zasilaczy elektronicznych.
Pierwotny schemat zaczerpnąłem ze strony Krzysztofa Górskiego www.ne555.com.
Ten schemat zawiera oprócz timer'a 555 jeszcze stabilizator napięcia (8 V). Dzięki temu można układ 555 zasilacz np z 24 V, co zostało przetestowane poniżej. Rezystancja obciążenia miała naśladować dwie żarówki samochodowe, każda po 21 W.
W samochodzie, gdzie minus jest obecny "na karoserii" żarówkę na powyższym schemacie należy przełożyć "na przewód" znajdujący się pomiędzy tranzystorem "M1" i minusem zasilania "V1".
Układ umożliwia sterowanie wypełnieniem w bardzo szerokim zakresie:
***
Układ scalony 555 jest bardzo uniwersalnym układem i jest w nim coś urzekającego, ale gdy wykonamy to samo za pomocą mikrokontrolera to można jeszcze dodać kilka funkcji, a układ nie będzie nadmiernie rozbudowany:
- Uruchomienie świateł dopiero po rozpoczęciu ładowania przez alternator*.
- Łagodne rozjaśnianie świateł podczas właczania*.
- Łagodne gaszenie świateł, włącznie z funkcją "powrót do domu", czyli światła działają jeszcze przesz zadany czas po zamknięciu drzwi lub uruchomieniu alarmu.
- Wyłączenie świateł gdy zaciągnięty jest hamulec ręczny. Co najmniej 3 z powyższych funkcji nie są zgodne z prawem dotyczącym samochodów poruszających się po drogach publicznych w Polsce.
Zwiększałem zasilanie do prawie 24 V, co przy 30% wypełnieniu (PWM) przełożyło się na 11,9 V napięcia skutecznego zasilajacego halogeny (40 W dostarczonej mocy). Użyłem dwóch halogenów 12 V, 20 W. Nie chciało mi się schodzić do samochodu po żarówki samochodowe 21 W, zresztą nie posiadam oprawek do nich. Myślę, że użyte halogeny są wystarczająco dobrym przybliżeniem żarówek samochodowych.
Gdyby ktoś chciał użyć takiego sterowania do halogenów, to przypominam, że cykl halogenowy wymaga odpowiedniej temperatury.
***
Jak widać układ jest banalny, ale zauważyłem, że w internecie można spotkać wiele schematów opartych o 555 i realizujących taką funkcjonalność, ale pojawiają się problemy i brak pewności, czy schemat jest poprawny. Tu widać na filmach, że działa.
Obecnie coraz popularniejsze jest użycie przetwornic w jako zasilaczy w sprzęcie komputerowym i RTV. Właściwie to już praktyczne wyeliminowanie zostały zasilacze oparte o transformatory i stabilizatory liniowe. Spowodowało to pojawienie się problemów przy amatorskim pomiarze napięcia w przetwornicach. Użycie popularnych multimetrów (reagujących na wartość średnią sinusoidy) nie przynosi tu oczekiwanych rezultatów.
Wszystkie modele multimetrów posiadających rozbudowane możliwości przy jednocześnie małej cenie zakupu posiadają wady ujawniające się przy próbie ich użycia w bardziej wymagających pomiarach. Wraz ze skomplikowaniem się technologii mierniki używane do pomiarów również muszą posiadać lepsze parametry.
Nie da się też ominąć potrzeby posiadania bardziej specjalistycznych przyrządów. Standardem jest posiadanie nie tylko prostego multimetru, ale też oscyloskopu, generatorów, zasilacza laboratoryjnego, specjalizowanych lutownic, itp. Inaczej jesteśmy pozbawieni możliwości diagnostyki i naprawy dużej ilości współczesnego sprzętu elektronicznego.
Problem pomiaru prądu np.: po stronie wtórnej transformatora impulsowego za pomocą zwykłego multimetru sprowadza się do problemu pomiaru prądu odkształconego (prądem odkształconym zmiennym nazywamy inny niż sinusoidalny). Nie jest to trywialny problem. Co chcemy zmierzyć? Wartość średnią? Chwilową? Może miedzyszczytową, szczytową, skuteczną? Mierniki True RMS zapewniają pomiar rzeczywistej wartości skutecznej.
Najprostszym i kompleksowym rozwiązaniem jest posiadanie oscyloskopu, gdyż użycie multimetrów do pomiaru napięć odkształconych (minimalnie!) napięć ilustruje poniższy film:
W transformatorze separacyjnym uzwojenia pierwotne i wtórne są odseparowane galwanicznie od siebie. Dzięki temu, pracując z urządzeniem zasilanym z takiego transformatora, ograniczamy ryzyko porażenia podczas jednoczesnego dotknięcia do ziemi i do przewodzących części urządzenia (będących pod napięciem). Należy więc zadbać, aby pojedyncze uszkodzenie izolacji odbiornika było mało prawdopodobne, a jeżeli już nastąpi, to prąd upływu był mniejszy od niebezpiecznego dla człowieka. Wymaga to ograniczenia kontaktu przewodzących części urządzeń podłączonych do transformatora ochronnego z "ziemią". Nie wolno uziemiać, zerować lub łączyć obwodu separowanego transformatorem ochronnym z innymi obwodami elektrycznymi lub częściami przewodzącymi innych obwodów.
Dzięki temu, że obwód do ziemi się nie zamyka, dotykając przewodzącej części zasilanej z transformatora separującego porażenia doziemnego nie będzie.
Kolejnym stopniem ochrony jest więc zastosowanie izolowanego stanowiska pracy. Izolujemy podłogę, ściany - wystarczy izolacja rzędu 100 kΩ, by ewentualny prąd ograniczyć do miliamper (w zależności od napięcia i częstotliwości). W zasięgu ręki nie powinny znajdować się żadne uziemione przedmioty, jak: metalowe obudowy urządzeń w I klasie ochronnej, nieizolowane wyjścia oscyloskopów, generatorów, grzejniki C.O., krany, przewodzące części instalacji antenowych, itp.
Z obwodu separowanego powinien być zasilany, tylko jeden odbiornik - od tej zasady są wyjątki, ale dotyczą instalacji odpowiednio dozorowanej i chronionej zabezpieczeniami informującymi o uszkodzeniu izolacji. Podłączenie więcej niż jednego odbiornika powoduje dodatkowe zagrożenie w przypadku wystąpienia dwóch uszkodzeń (izolacji, przebić, itp.). Wtedy pomiędzy różnymi urządzeniami może wystąpić napięcie zagrażające operatorowi.
Jeżeli mimo zakazu podłączymy do transformatora separacyjnego grupę odbiorników to dostępne części przewodzące odbiorników powinny być ze sobą połączone izolowanymi nieuziemionymi połączeniami wyrównawczymi. Takie nieuziemione połączenia wyrównawcze (PBU – protective bonding unearthed) nie dopuszczają do powstania wyczuwalnej różnicy potencjałów między jednocześnie dostępnymi elementami urządzeń. PBU powoduje również, że jeżeli wystąpi drugie uszkodzenie izolacji, w drugim torze zasilającym, to powstanie zwarcie wielkoprądowe, przez co powinny zadziałać odpowiednie zabezpieczenia.
Podsumowując: istotą separacji odbiornika jest całkowite odseparowanie obwodu odbiornika od sieci zasilającej za pomocą transformatora separacyjnego lub przetwornicy separacyjnej. Jest to dodatkowa ochrona, która nie zwalnia z obowiązku zachowania szczególnej ostrożności i myślenia. Dotyk bezpośredni urządzeń zasilanych z transformatora separacyjnego (lub sieci IT) nie jest w 100% bezpieczny. Nigdy nie ma pewności, czy właśnie nie nastąpiło przypadkowe uziemienie i czy upływność instalacji jest na pożądanym poziomie. Należy też pamiętać, że za transformatorem separującym nie rozróżniamy zasilania "L" i "N" - mamy raczej dwa "L".
Transformatory separacyjne (o odpowiedniej mocy) są podstawowym elementem zestawów zasilających izolowaną sieć elektryczną „IT” zasilającą np.: sale operacyjne, OIOM, itp.
Transformator separacyjny, ochronny, 1000 VA:
Moc transformatora musimy dostosować do badanych urządzeń. Trywialne, ale warto zastanowić sie nad sensem kupowania jednostek o mocy 160 VA.
Pudełko chusteczek dla porównania wielkości:
Niektóre transformatory separacyjne posiadają pomiędzy uzwojeniami ekran, który ma zastąpić pojemność miedzyzwojową transformatora mniejszą pojemnością powierzchni prostej, a tym samym zmniejszenie upływności transformatora (poprzez reaktancję wzdłużną). Takie transformatory polecane są do szpitali i jako elementy zapewniające ochronę przed zakłóceniami studiów nagraniowych, reżyserek i laboratoryjnych stanowisk pomiarowych.
Jednak prąd upływu tego transformatora separacyjnego jest praktycznie niemierzalny, pomimo braku ekranu pomiędzy uzwojeniami:
Pierwszy pomiar napięcia pokazał "aż" 1,8 V, ale należy uwzględnić wysoką rezystancje miernika (około 9 MΩ):
Bezpiecznik chroniący bezpośrednio uzwojenie pierwotne:
Bardzo solidne nóżki.
Poniżej widocznym przełącznikiem można ustawić jakim napięciem transformator jest zasilany. Dzięki temu na wyjściu transformatora można uzyskać oczekiwane napięcie, nawet miejscu, gdzie napięcie jest niższe od oczekiwanego:
Napięcie pomiedzy wyprowadzeniami wyjścia transformatora separacyjnego w stosunku do potencjału ziemi zależy od podłączonych do niego urządzeń, oraz rezystancji obciążenia. Przykłady:
Do transformatora podłączony jest UPS 650 VA za pomocą przedłużacza o długości 5 m.
Przy rezystancji wejściowej woltomierza wynoszącej 9 MΩ dla kolejnych "wyjść" (nie mogę napisać L i N, ponieważ jak już, to są dwa razy L) transformatora separacyjnego napięcia wynoszą:
Po zmianie rezystancji wejściowej na 1 MΩ zmierzone napięcia wynoszą już:
Po odłączeniu UPS'a, czyli zostaje tylko przedłużacz o długości 5 m, zmierzone napięcia wynoszą (rezystancja wejścia woltomierza 9 MΩ):
Przy rezystancji wejścia woltomierza wynoszącej 1 MΩ:
Widać jak silne jest sprzężenie pojemnościowe, co może wpływać na niektóre pomiary wykonywane przy użyciu transformatora separacyjnego.
***
O pomiarach, głównie oscyloskopowych, ale nie tylko, przy użyciu transformatora separacyjnego napiszę w późniejszym terminie. Teraz tylko zasygnalizuję, że należy zwrócić uwagę na możliwość powstania pojemności pomiędzy ziemią, a obudową przyrządu (co pokazują powyższe pomiary). Nadal najlepiej jest posiadać odpowiednie sondy lub/i oscyloskop o izolowanych wejściach, nawet jak pomiędzy tymi wejściami też jest pewna pojemność...